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Earth Scale

Solar Flares

-

e Solar flares are the strongest transient® ,‘r"v‘"‘
. ’ |
phenomena in the Heliosphere ‘

* Tremendous amount of energy (up to 103 erg) is

released during one event in a timescale of tens of minutes

* Energy released during one solar flare is enough to cover

the world energy consumption for 10 thousand years!

2017-09-06 11:00:21 www.helioviewer.org




Impact on Space Weather

Solar flares represent the most prominent manifestation of the Sun’s magnetic activity. They are often accompanied by high-
speed coronal mass ejections and high-energy particles that greatly impact Earth’s space environment and space weather,
technological and biological systems:

* Destroy satellites equipment * Disrupt power grids by return currents
* Affect radio communications and GPS navigation * Provide potential danger for space exploration
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Multiwavelength nature of flares

ﬁnjection of accelerated electrons

Magnetic field lines

Chromospheric evaporation
Corona
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Standard model of solar flares includes physical processes reflected in different wavelengths / observation types:

Magnetic reconnection in the coronal current sheet (current sheet structure observed in EUV; termination shocks reported in radio)
Propagation of accelerated particles down into the chromosphere (gyro synchrotron radio emission; hard X-ray bremsstrahlung
emission; sometimes photospheric white-light emission)

Expansion of the heated chromospheric plasma into the coronal loops (chromospheric evaporation; visible in EUV images and
spectra, and recognized in soft X-ray emission behavior)

Eruptions of the plasma into the interplanetary space (coronal mass ejections; visible in EUV images and coronagraph observations)



Observing Solar Flares

Solar flares cover the whole range of electromagnetic radiation il /—aﬁ‘
spectrum, from radio- to gamma-rays, observed by many NASA space it , STERED ) °
missions, including: . ? Ao

*  Solar Dynamics Observatory (SDO)

RHESSI

* Geostationary Operational Environmental Satellite (GOES)

«  Solar and Heliospheric Observatory (SoHO) ] %
/// S Solar

*  Solar Terrestrial Relations Observatory (STEREO) grnEe e
* Reuven Ramaty High Energy Solar Spectroscopic Imager Yt

(RHESSI) S———
* Interface Region Imaging Spectrograph (IRIS) ... \IQ‘\\\ F— I"’r%;ésllfg) R
For a complete understanding of the flares it is necessary to perform a s Soar9)
combined multi-wavelength analysis and classify large amounts of - ) THEiS @) ﬁ
scientific data produced by space-based and ground-based [ 20 4 ‘ oo

observatories. Such classification and analysis will allow us to get
clearer physical picture the observed phenomena, from their onset to
space weather impacts.
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| Heliophysics Systems Observatory. Credits: https://www.nasa.gov/



https://www.nasa.gov/

Advantage of observational data

Observational data from various
NASA space telescopes and ground-
based observatories

Processing and
analysis of
individual data sets

(case studies)

Data and metadata Prediction of
integration and

systematization

Many more

solar events and o |
applications!

Space Weather

Data-driven
models of
space weather

events




Part I. Helioportal




Motivation

* Many problems in solar-terrestrial physics require analyses to be performed using data from a particular set of
instruments, and/or for a sample of flares with particular characteristics.

* Currently flare records made by different instruments are stored separately from each other. Matching records from
different flare lists and search for the flare events with specific physical characteristics are complicated tasks. ..
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Announcement of Helioportal (IMIDSF)

4 )
An Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare. njit.edu/) was developed for
efficient data search, integration of different flare lists, and representation of observational data. IMIDSF 1is fully
functional and allows users to search for uniquely identified flare events based on physical characteristics
(descriptors) and availability of observations of a particular set of instruments.
J

4 )

As part of a larger effort to provide a data portal for collaborative heliop}Blsics research, NAS Division staff
integrated and added security checks to the Interactive Multi-Instrument Database of Solar Flares in a new
heliophysics portal, hosted on the NAS website: http://helioportal.nas.nasa.gov.

The IMIDSF is a collaborative project among the NASA Advanced Supercomputing (NAS) Division, NASA
Ames Heliophysics Modeling and Simulation team, and the New Jersey Institute of Technology’s Department of
Physics, Department of Computer Science and the Center for Computational Heliophysics.

- J



https://solarflare.njit.edu/
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Helioportal Milestones

receives NASA support eather Wor

June 2015: Project %Pril 2016: Space
’ shop

Design and Implementation of a
Multi-Instrument Database of Solar
Flares (NASA NNX15AN48G, PI

Gelu Nita, Co-Is: Alexander First live demonstration of the

Kosovichev and Vincent Oria)
poster)

|
|
l
Database of Solar Flares (E- :
|
|
|
|
|

July 2017: The IMIDSF
paper is published in
ApJS

Sadykov V.M., Kosovichev A.G.,
Oria V., and Nita G.M. “An
Interactive Multi-instrument
Database of Solar Flares” . 2017,
The Astrophysical Journal
Supplement Series, Volume 231,
Issue 1, article id. 6.

February 2018: The
Helioportal is launched

The project is open for public,
https://helioportal.nas.nasa.gov

First presentation of the Database
of Solar Flares. Workshop
supported by 2015 Faculty Seed
Grant from NJIT, PI Alexander
Kosovichev

J anuargVZOl& NJIT-
NASA Workshop on
Computational
Heliophysics

The Interactive Multi-Instrument
Database of Solar Flares

(IMIDSF,

https://solarflare.njit.edu/) is
released. The launch is
announced in Solarnews.

IMIDSF launch is

February 2017: The ‘ August 2017: IMIDSF

announced

started

transfer to Helioportal is




Interactive Multi-Instrument Database of Solar Flares
(IMIDSF, https://helioportal .nas.nasa.gov/, https://solarflare.njit.edu/)

ABOUT DATA SOURCES QUERY DATA PRODUCTS CONTACTS

Interactive Multi-Instrument
N Database of Solar Flares

Interactive Solar Flare Database SD0.A12:1600:0 Angstrom 2011:09:08101:49:53 Click to explore

coooce@oo 900.0 4500 00 4500  900.0
X-position [arcsec]

Frojaet Dasierjater)

The fundamental motivation of the project is that the scientific output of solar research can be greatly enhanced by better exploitation
of the existing solar/heliosphere space-data products jointly with ground-based observations.

Our primary focus is on developing a specific innovative methodology based on recent advances in "big data" intelligent databases
applied to the growing amount of high-spatial and multi g lution, high-cad data from NASA's missions and
supporting ground-based observatories.

Our flare database i |s not simply a manual searchable time-based catalog of events or list of web links pointing to data. Itis a . . . . . .
— p 2 . J e p—— ldg?mfcanon of all recorded ﬂaresp(s)ha:gg e Team: Viacheslav Sadykov, Rishabh Gupta, Dr. Alexander Kosovichev, Dr. Vincent Oria, Dr. Gelu Nita

characteristics, features, and parameters.

The result is a new and umque database of so]ar flares and data search and classification tools for the Heliophysics community, P I'OjeC'[ DeSC” ptlon
enabling multi-i nent/r gth igations of flare physics and supporting further development of flare-prediction
methodologies. The fundamental motivation of the project is given by the idea that the scientific outcome of solar research can be greatly enhanced by a better exploitation of the existing
solar/heliosphere space data products jointly with ground-based observations

Launch Solar Flare Query
Page Our primary focus |§ on developmg a specific mnoyatlve Imethodology based on the recent anances in "big data" intelligent databases a.nd on the tremendously growing

amount of high-spatial and multi-wavelength resolution, high-cadence data from NASA's missions and supporting ground-based observatories.



https://helioportal.nas.nasa.gov/
https://solarflare.njit.edu/

IMIDSF Structure

Helioportal consists of several functional
elements:

1. Back-End MySQL database containing
primary and secondary event lists and
background data sources

N

Back-End daily-update system (PHP
and Python scripts) for data upload,
processing and enrichment

@

Front-End web application with the
user query form and presentation of the

query results and event summary
B Q/ My S&

& U

JavaScript

Background data

Primary event lists Secondary event lists ..
characteristics

Processing: data
preparation
¥
/Storage of processed data in the SolarFlare database\

Processing: calculation of additional event
descriptors

Merging of
primary
catalogs.
UniquelD

assignment

BACK-END DAILY PROCESSING

\Primary Sources Secondary Sources  Background Daty

Selection of the UID Application of filters
events satisfying the for secondary
primary catalog filters catalogs

List of the Unique events satisfying the query

Representation of the selected event:
quicklook lightcurves and event summary

WEB QUERY PROCESSING




Helioportal Data Sources

Primary Event Lists

GOES flare list 2002 Jan — current time ftp://ftp.swpc.noaa.gov/pub/warehouse/
RHESSI flare list 2002 Feb — current time http://hesperia.gsfc.nasa.gov/hessidata/dbase/
HEK flare list 2010 Feb — current time https://www.Imsal.com/isolsearch

Secondary Event Lists

IRIS observing logs 2013 Jul — current time http://iris.Imsal.com/search/

Hinode flare catalog 2006 Nov — 2016 Jul http://st4a.stelab.nagoya-u.ac.jp/hinode_flare/

Fermi GBM flare catalog 2008 Nov — current time https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/

Nobeyama coverage check 2010 Jan — current time ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr/

OVSA flare catalog 2002 Jan — 2003 Dec http://www.ovsa.njit.edu/data/

EOVSA flare catalog 2017 Jan — current time http://www.ovsa.njit.edu/wiki/index php/Expanded_Owens_Valley_Solar_Array
CACTus CME catalog 2002 Jan — current time http://sidc.oma.be/cactus/

Filament eruption catalog 2010 Apr — 2014 Oct http://aia.cfa.harvard.edu/filament/

Konus-WIND flare catalog 2002 Jan — 2016 Jul http://www.ioffe.ru/LEA/Solar/index .html

Background Data Characteristics

GOES X-ray light curves (and T&EM) 2002 Jan — current time https://umbra.nascom.nasa.gov/goes/fits/
SDO/EVE ESP light curves 2010 Feb — current time http://lasp.colorado.edu/eve/data_access/

Nobeyama Polarimeter data 2010 Jan — current time ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr/



Helioportal Data
® GOES flares ® RHESSI -Plares. HEK flares

Enrichment and PrOC@SSing SDO AIA 1600.0 Angstrom 2014-06-12 04:21:04

Our daily-based processing includes: 900.0

* Identification and assignment of unique identifiers
(UniquelDs) for flares from GOES, RHESSI, and HEK
flare catalogs 450.0

* Determination of missing coordinate information from
the position of parental active regions

* Calculation of some data products (example: 0.0
temperatures and emission measures based on GOES
observations in 0.5-4 A and 1-8 A channels)

-450.0

-900.0

Counterparts for gev_20140612_041400 ' ' '
M2.0 class flare from GOES, RHESSI =00.00 =430.0 = 0.0 450,
and HEK flare catalogs X-position [arcsec]

900.0



Examples of Application

Statistical Study of Chromospheric Evaporation in Solar Flares

* To connect energy fluxes deposited in solar flares and the properties of the responding solar plasma and compare results with the RHD chromospheric
evaporation simulations, the dataset of flares simultaneously observed by IRIS (here in the fast-scanning regime) and RHESSI is required

Statistical study of Soft X-ray Emission Properties and Timescales from GOES observations

 The results of the application of TEBBS algorithm (T and EM calculations) for GOES flares detected from 2002 until today are available as a data
product at Helioportal (https://helioportal.nas.nasa.gov/). IMIDSF allows us to integrate GOES and RHESSI flares and catch the difference
between the flares with different timescale relations.

Forecasting of Solar Flares using Machine-Learning Methods

* Helioportal allows the users to request the statistics of flares for each AR in one click. Integration of the AR magnetic field descriptors (SHARP
parameters and PIL parameters) with flare events is planned. It is also possible to request not only the GOES class but other physical
characteristics of solar flares, and, in principle, work on the prediction of these characteristics.

2.0
1.8 =
SOL2014-02-13T01:32:00 Coarse raster, 8 slits XRT, EIS E
E 15 16t
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% 1.2 TE“
© .
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https://helioportal.nas.nasa.gov/

Future Plans

Our long-term goal is to expand the functionality of
Catalog Generator

the Helioportal. We are currently developing the (flares events with

Intelligent Database of Solar Events and Active particular physical
characteristics)

Regions (IDSEAR). We plan to include the
following into new database:

* Increase number of flare and flare-related event

) o Integration Point for Database of
sources and observational characteristics/logs observations and prepared descriptors
. . A models of the flare for flare and flare-
* Include Active Region characteristics (PIL and flare-related related event

characteristics, SHARP  parameters) and events forecasts
integrate them with solar events

e Integrate solar events with existing models;
provide initial conditions for models

* Provide multi-level access to the database
(possibility to work with both the products of
integration and catalogs before integration; started)

e Provide various data products (subsurface flow

HELIOPORTAL

Access Point to Access Point to

maps, NLFFF extrapolations for flaring ARs etc) various data Solar and
products for flare Heliosnheric dat
* Develop IDL and Python packages to access the and flare-related eliospheric data

and metadata
database, requests catalogs and data products cvents

* Integrate with other resources




IDSEAR 1n progress IDSEAR ERD
At the current stage, we have completed the following steps
towards the IDSEAR implementation: —y
1.  Designed IDSEAR and performed accurate mapping of the oD HCED
designed schema to the relational MySQL database )
2. Transferred data from IMIDSF into IDSEAR i
3. Integrated records from different flare catalogs and assigned o > T
unique flare identifiers (UniquelDs) for the flare records - <L‘>
4. Loaded SHARP data from JSOC/Stanford and PIL =
descriptors as tables under “Active region over time” entity
5.  Implemented and tested codes for various AR data products e H e |
and descriptors (NLFFF cubes, subsurface flow maps and
related descriptors) Ca>
0.4F 3 -
2 03F E e » & |
A | > o
o E_ 5 | ”U L4 ] Xsz Qsz
£ o2, I ) ! J“J“‘nm”ﬂ = GO G
= ' U - B>
0.1F K i o !
0.0k . . . . . - .
0 20 40 60 80 100 e =
Hours from 3-Sep-2017 20:00:00 b ot D
Ratio of fluxes carried by highly-twisted and non-twisted =
magnetic field lines for active region AR12673 -




. MySQL [sun_rsrch]> SELECT s.SharpID, s.USFLUX, s.AREA_ACR, s.R_VALUE,
IDSEAR uerles g.GoesID, g.StartTime, g.EndTime, g.FlareClass
FROM SharpPrmtr AS s FORCE INDEX (SharpID, T_REC, DATE_OBS, NOAA_AR),

GoesFlrCata as g FORCE INDEX (GoesID, StartTime_2, StartTime, EndTime, GoesARNum)
WHERE g.StartTime BETWEEN '2010-01-01' AND '2019-01-01°

AND .FlareClass BETWEEN 'M1.0' AND 'X9.9"
IDSEAR DB already operates at NJIT MD 9. GoosARNUM < 0
H 1 f AND s.NOAA_AR = g.GoesARNum
Server. ere are Ssome examples o timestampdiff (MINUTE,g.StartTime,s.T_REC) > 720
future “typical” queries to the DB. e T, g T T R T e e .

| R_VALUE FlareClass |

| .088371e22 .373688 . 2010-05-05 :13: 2010-05-05

Example 1 | .016187e22 .260132 . 2010-06-12 :30: 2010-06-12
° 1 1 | .093167e22 .591919 . 2010-08-07 :55: 2010-08-07
Properties of the parental active i 480548622 1007629 _ 2010-10-16 19:07: 2010-10-16

1 | .090904e22 .275299 . 2010-11-04 :30: 2010-11-05
regions (SHARP  parameters) for [ | 2.787108e22 | .238647 |  4.094 | | 2010-11-05 12:43:00 | 2010-11-05
Strong flares (M and X Class) A | 2563316 .970982e22 .145752 . 2017-09-08 07:40: 2017-09-08

| 2563353 .927371e22 .391846 . 2017-09-08 :09: 2017-09-08

hours before the flare. | 2563392 .349583e22 .272827 . 2017-09-08 23:33: 2017-09-08
| 2563416 .196586e22 .531128 . 2017-09-09 04:14: 2017-09-09
e About 45 seconds for whole [EEEEEE .078946e22 .984497 . 2017-09-09 10:50: 2017-09-09

| 25635605 0 .621277 . 2017-09-09 22:04: 2017-09-10
database request | 2584868 .852978e21 .674744 . 2017-10-20 23:10: 2017-10-20
R L R e L L R R L T +
564 rows in set (44.76 sec)
MySQL [sun_rsrch]> SELECT s1.SharpID, s1.HARPNUM, s1.T_FRST1, s1.T_REC, s1.LON_FWT, s1.LAT_FWT, s1.USFLUX
-> FROM SharpPrmtr AS sl FORCE INDEX (SharpID, HARPNUM, T_FRST1_2, T_FRST1, T_REC, LON_FWT_2, LON_FWT, LAT_FWT)
-> WHERE ~ s1.T_FRST1 BETWEEN '2010-01-01' AND '2019-01-01'
-> AND s1.LON_FWT BETWEEN -45.0 AND 45.0
-> AND s1.LAT_FWT BETWEEN -45.0 AND 45.0 Example 2.
-> AND (s1.LON_FWT <> © OR s1.LAT_FWT <> 0)

_ sL.TFRSTL = s1.TREC; * List of active regions (SHARPs) appeared
on the Sun at wuser-defined time,

HFERENRFRFROFROOODOVUOON

2010-05-01 :00: 2010-05-01 :00: .227911 15.40951 .846205e21 : :
2010-05-01 :00: 2010-05-01 100: .801724 .844969 .790045:20 longltUde, and latltude ranges

.
|
M
|
| 2010-05-01 00:00: 2010-05-01 00:00: .004806 .786865 | 6.642536e20
| 2010-05-02 14:36: 2010-05-02 14:36: .990009 .479801 1.0241e20 * About 40 seconds for whole table request
2612947 |
2619274 |
2621458 |
2621565 [
2621586 [
2623271 [
+

2018-04-18 15:36: 2018-04-18 15:36: .497038 .862375 | 2.562211e19
2018-05-22 20:36: 2018-05-22 20:36: .969915 .345559 | 1.344429e19

2018-05-27 16:00: 2018-05-27 16:00: .245598 .783037 | 2.747221e19 .

2018-06-03 01:00: 2018-06-03 01:00: .270744 .077038 | 2.809222¢20 API and UI are coming Soon...
2018-06-05 07:48: 2018-06-05 07:48: .342995 .169471 | 4.55595¢19

2018-06-17 21:12: 2018-06-17 21:12: .734566 .777799 | 2.733343e19

+
|
+
|
I
|
|
| 7261
| 7265
| 7266
| 7267
|

+

in set (39.45 sec



Part II. Predicting
Solar Flares







Why 1s 1t important to predict flares?

* The prediction of strong solar flares is one
of the key questions of Solar Physics: solar
flares are one of the primary drivers of space

weather

* Besides many attempts, the operational
predictions are still mainly done based on

experts opinion and experience.

* Many observational studies and previous
ML studies confirmed the important role of the
properties of the magnetic field in active

regions for prediction of solar flares

* Attempts to predict flare events help us to
understand physics of solar flares and their

triggering mechanisms

HMI magnetogrami2042:-10-2510844545 AIAMIG00 2012-10-23 03:14:16

Credits: https://helioviewer.org/

Primary goal: utilize an advantage of high volumes of observational data
to discover new flare-sensitive features, evaluate importance of particular
types of observations, and potentially enhance operational forecasts



Properties of the SWPC NOAA Operational Forecasts

Expert predictions VS flare presence (M-class, 1 day ahead) Expert predictions VS GOES daily maximum flux (M-class, 1 day ahead)
- - - : - : . T : q . : .

e The current daily operational forecasts at

0.60F 0.40} i

the SWPC are made by forecasters for each

o

0

v}
T

of the three upcoming days using a modified
three-component Zurich class (Mclntosh
1990) and magnetic class (Smith & Howard
1968) for each active region and historical
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* Nevertheless, the expert-based o 020 9) C
ege o . . -60 -40 -20 0 20 40 60 - - -
probabilities represent valuable information Time lag, hours P et
for the flare forecast. Cross correlation coefficient of the expert probabilities of M-class and X-

class flares and various SXR characteristics of the flare activity



Magnetic field in active regions

e The magnetic field is the only reservoir able to store the
typical energy released during the solar flares => one has to

look at magnetic properties of parental active regions

* NASA’s Helioseismic and Magnetic Imager onboard the
Solar Dynamics Observatory (SDO/HMI) provides the
routine coverage of the whole Sun photospheric line-of-sight
and vector magnetic field data since 2010, resulted in more

than 1PB generated data

« Examples of magnetic field descriptors in Active Regions:

* Space weather HMI Active Region Patches (SHARPs, Bobra
et al. 2014)

*  Properties of the magnetic field Polarity Inversion Line (PIL)

in strong field regions (Sadykov and Kosovichev 2017)

e Descriptors of extrapolated 3D magnetic field structure (free

energy excess, ratio of fluxes in twisted/untwisted lines, ...)

SDO/HMI Tracked AR (HARP)
2013/01/13
00:48

238!

2372

116564

116541 62T g5590 Treopoaetdet

Al 116504 ‘416554 116424

i

2358
«

2360

238

Credits: Bobra et al. 2014
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PIL detection algorithm and extracted features

AR 11158 2011-02-16T20:00:00

* Previous statistical and case studies of solar flares demonstrated importance of the magnetic polarity inversion lines (PILs) in
active regions for the flare initiation and development process

* We divide the line-of-sight active region magnetogram into regions with strong positive field (“positive” segments), strong
negative field (“negative” segments), and weak field (“neutral” segments).

* For each AR, we remap the LOS magnetogram onto the heliographic coordinates, and solve the segmentation problem
formulated as an optimization task (Chernyshov et al, 2011).

* The segmentation results are used to determine the PIL and corresponding characteristics



Schema for the binary flare forecast in active region

1. Construction of labeled data set

e Measure characteristics of the active region (SHARPs, PIL) at a certain time moment

e Determine if a strong flare happened in the active region within certain time (say, 24 hours)
from the considered moment

e One has: vector of characteristics and its label (0 or 1)

2. Separation of data into train/validation/test data subsets

3. Feature selection on train data set (F-score, Gini importance, other)

4. Optimization of the classifier on train/validation data sets

e Different classifiers have different inner parameters which should be optimized

. : . TP FP
e Target: maximization of a certain metrics. Example: TSS = —
TP+FN  FP+TN

5. Performance of the classifier on test data set. Comparison of results.




Examples of previous results (TSS)

Sadykov and Kosovichev (2017) | PIL characteristics only | PIL + global characteristics | 50% decreased threshold values

Prediction of =M 1.0 flares 0.76x0.03 0.74+0.03 0.76x0.03
Prediction of =X1.0 flares 0.84+0.07 0.84+0.07 0.85+0.04
(vector MF) (vector MF, flare prehistory etc.) (operational separation of DS)
>M1.0 flares 0.82 (SVM) 0.87 (SVM), 0.91 (kNN) 0.80 (DNN), 0.33 (SVM)
>X1.0 flares 0.88 (SVM), 0.91 (kNN)
PREDICTIONS (from Nishizuka et al 2017) (from Nishizuka et al 2017) (from Crown 2012, Table 4)
>M1.0 flares 0.50 0.34 0.53
>X1.0 flares 0.21 - 0.49

For more accurate comparison with expert-based predictions (any operational forecast) one needs at least to unify dataset

structures. We attempt to do it by obtaining daily descriptors and predicting next day flare activity (as done by SWPC).

Primary goal: investigate the possibility of enhancement of the SWPC NOA A operational forecasts by employing machine-

learning algorithms to combine expert predictions with magnetic field and soft X-ray flux characteristics



Our study: Data Sources and
Descriptors

1.  SWPC NOAA operational forecasts (probabilities) of M/X-class flares for
the next day (ftp://ftp.swpc.noaa.gov/pub/warehouse/)

2. Statistics of M/X-class flares from https://helioportal .nas.nasa.gov/
3. SXR 1-8A flux obtained by GOES/XRS

4. Polarity Inversion Line (PIL) characteristics obtained from SDO/HMI line-
of-sight magnetic field data (Sadykov and Kosovichev, 2017)

5. Space Weather HMI Active Regions Patches for NOAA ARs (SHARPs,
Bobra et al. 2014)

The data are obtained for May 01,2010 — Dec 31, 2017 time period. For each day
for the midnight time, we obtain the following features of the solar activity:

* Averaged and peak SXR fluxes during the 1-3 preceding days
* Total number of M-class and X-class flares during the 1-3 preceding days

e Daily mean and maximum values of the PIL characteristics (maxima over
ARs are selected)

e Daily mean and maximum values of the SHARP characteristics (maxima
over ARs are selected)
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Credits: https://helioportal.nas.nasa.gov/, Sadykov and
Kosovichev 2017, Bobra et al. 2014, RHESSI Browser
(http://sprg.ssl.berkeley.edu/~tohban/browser/)



https://helioportal.nas.nasa.gov/
http://sprg.ssl.berkeley.edu/~tohban/browser/

Feature Selection Algorithm

1. The labels for the data set are assigned: 1 if there is an M/X-class flare which happened on the next

day, O otherwise. The days when the flares were only located close to the limb are ignored.

2. The features are ranked according to their Fisher ranking score
3. The dataset is randomly shuffled and divided 10 times into the train-test subsets with the ratio 2/1.

4. For each classification algorithm, metrics to maximize, and feature type (PIL, SHARP, SXR), the
following algorithm is performed:
1. Select two features with the highest F-score (or the feature of the highest F-score and SWPC prediction probabilities)
2. Find the classifier parameters which maximize the mean of the metrics (score) across the train-test data sets
3. Introduce the feature with the next highest F-score and temporarily add it to the previously-considered features
4. Find the classifier parameters which maximize the mean of the metrics across the train-test data sets
5

If the score is higher than previously-obtained plus certain threshold, add the feature permanently. Discard it otherwise.

Return to the step c.



Tested ML algorithms

* Performance of ML algorithms was measured
in terms of True Skill Statistics (TSS) and
Heidke Skill Score (HSS):

TP FP
TP+FN FP+TN

TSS =

2 X [(TP X TN) — (FN X FP)]

HSS = (TP + FN) x (FN + TN) + (TP + FP) x (TN + FP)

* For each algorithm and metrics, we find
optimal parameters which maximize the score

averaged over train-test subset pairs

* The performance is tested for each group of
parameters  (PIL/SHARP/SXR/ALL)  and
including / excluding SWPC probabilities




Enhancement of the Binary (Yes/No) Forecast

We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

*  Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

e The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

*  The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

- 0.601+0.041 0.598+0.035 0.601+0.040 0.595+0.034  0.541+0.033 0.295+0.045 0.589+0.034 0.572+0.042 0.574+0.041 0.577+0.042
- 0.560+0.024 0.586+0.030 0.579+0.029 0.58340.026  0.515+0.045  0.285+0.033 0.564+0.031 0.551+£0.041 0.537+£0.035 0.506+0.059
- 0.568+0.040 0.567+0.038 0.568+0.043 0.56740.042  0.470+0.029  0.233+0.027 0.559+0.045 0.546+0.028 0.549+0.039 0.545+0.039
- 0.612+0.039 0.632+0.031 0.617+£0.041 0.6204+0.034  0.550+0.032  0.294+0.049 0.611+0.035 0.563+0.063 0.522+0.042 0.539+0.039
- 0.587+0.031 0.588+0.037 0.588+0.023 0.594+0.024 0.521+0.028  0.286+0.038 0.572+0.032 0.546+0.039 0.576+0.031 0.575+0.033

SHARP - ES - 0.573£0.0.37  0.583+0.034 0.587+0.032 0.584+0.033  0.510+0.040  0.244+0.033 0.572+0.034 0.557+0.033 0.535+0.045 0.527+0.039
- 0.564+0.043 0.570+0.039 0.569+0.036 0.57040.035 0.463+0.035 0.216+0.027 0.567+0.039 0.541+£0.039 0.543+0.028 0.535+0.042
- 0.619+0.030 0.627+0.033 - 0.628+0.025  0.553+0.038  0.289+0.046 0.618+0.028 0.564+0.049 0.499+0.052 0.529+0.057



Enhancement of the Binary (Yes/No) Forecast

We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

*  Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

e The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

*  The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

0.412+0.014 - - - = = = = - - -
- 0.444+0.031 0.445+0.035 0.444+0.029 0.449+0.026  0.396+0.023  0.352+0.044 0.430+0.028 0.428+0.039 0.424+0.028 0.431+0.023
- 0.403+0.030 0.426+0.034 0.411+0.042 0.414+0.032  0.372+0.040  0.335+0.028 0.414+0.028 0.400+0.041 0.401+0.051 0.405+0.043
- 0.417+0.021 0.417+0.019 0.412+0.020 0.426+0.022 0.361+0.035  0.286+0.049 0.410+0.035 0.403+0.024 0.394+0.011 0.386+0.024
- 0.467+0.040 0.477+0.034 0.467+0.036 0.476+0.031  0.408+0.011 0.350+0.038 0.449+0.024 0.435+0.031 0.441+0.040 0.420+0.053
- 0.426+0.042 0.430+0.041 0.432+0.041 0.440+0.039  0.377+0.024  0.341+0.047 0.425+0.038 0.401+0.050 0.413+0.033 0.407+0.042
SHARP - ES - 0.420+0.037 0.439+0.042 0.428+0.042 0.423+0.038  0.362+0.038  0.315+0.030 0.412+0.040 0.386+0.050 0.370+0.040 0.388+0.050
- 0.406+0.025 0.415+0.027 0.412+0.019 0.416+0.018  0.332+0.028  0.268+0.030 0.398+0.027 0.398+0.019 0.379+0.046 0.396+0.010
- 0.485+0.038 - 0.482+0.036 0.480+0.030 0.400+0.029  0.364+0.035 0.457+0.038 0.435+0.044 0.431+0.042 0.443+0.042



Enhancement of the Binary (Yes/No) Forecast

We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

*  Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

e The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

*  The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

ooy | | - - - - _ _ |
- 0.610+0.126 0.605+0.150 0.679+0.129 0.651+0.153  0.583+0.095 0.071+0.075 0.676+0.107 0.352+0.218 0.135+0.141 0.254+0.146
- 0.505+0.226  0.556+0.166 0.608+0.179 0.65340.156 0.367+0.168  0.031+0.067 0.563+0.156  0.164+0.093 0.154+0.137 0.199+0.187
- 0.722+0.074 0.735+0.070 0.737+0.081 0.753+0.084  0.707+0.211 0.044+0.103 0.780+0.063 0.444+0.211 0.282+0.172 0.221+0.272
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- 0.664+0.086 0.659+0.080 0.667+0.039 0.678+0.111 0.411+0.129  0.084+0.091 0.675+0.121 0.368+0.288 0.117+0.188 0.207+0.270
SHARP - ES - 0.416+0.238 0.413+0.216 0.464+0.165 0.456+0.132  0410+0.193  0.036+0.073 0.422+0.165 0.129+0.097 0.096+0.132 0.107+0.068
- 0.774+0.066 0.755+0.078 0.761+0.069 0.757+0.076  0.581+0.146  0.047+0.077 0.780+0.063 0.494+0.205 0.321+0.214 0.406+0.219
- 0.774+0.066 - 0.761+0.069 0.771+0.073  0.720+0.146  0.051+0.082 0.780+0.063 0.152+0.130 0.039+0.082 0.057+0.087



Enhancement of the Probabilistic Forecast

n
e : : 1
*  Performance of the probabilistic forecast can be measured by Brier Skill Score BS = EZ(Pi_Qi)Z

*  Probabilities estimated by Support Vector Classifiers (Platt 1999) trained on all featureiszéxcept the SWPC NOAA
expert predictions have lower BS (give better prediction) than expert-based probabilities.

Operational probabilistic prediction for 2016-2017 also has lower BS than the SWPC NOAA predictions

BS, M flares T T— — SVMRBF | SVMSigmoi

T IO 0.0918+0.0041 EXpe(‘ESS)“’reS 0.0111+0.0012
ALL +ES ; 0.0728+0.0043  0.0728+0.0043 ALL +ES ; 0.0067+0.0013  0.0066+0.0013
ALL-ES ; 0.0719+0.0042  0.0720+0.0042 ALL-ES ; 0.0067+0.0013  0.0062+0.0013

Comparison of M-class flare probabilities
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IMIDSEF (https://helioportal .nas.nasa.gov) is a fully-functional database of solar flares which:

* Integrates various flare lists and catalogs together with flare-related events
* Identifies uniquely-matched flare events based on time and position information
* Allows to search for the flare events based on their physical descriptors and observational coverage

We are currently working on IDSEAR database which:

» Combines solar events (flares, CMEs, eruptions etc) with properties of solar active regions and observational coverage
* Provides an opportunity for combined queries of these parameters

* (Planned) provides the user with unique AR descriptors and data products

ML forecasts of the solar flares demonstrate promising results:

* Binary (yes/no) forecasts of M/X-class flares based on each feature group (PIL, SHARP, SXR) separately have
the same or better performance than the SWPC NOA A operational forecasts.

* It is possible to enhance binary forecast of M/X-class flares by considering joint magnetic (PIL, SHARP) and
Soft X-ray characteristics.

* Probabilistic forecast of M-class and X-class flares based on the Support Vector Machine is better than the
SWPC NOAA operational forecasts in terms of Brier Skill Score.



A combination of comprehensive data
integration and representation
techniques and advanced machine

learning algorithms is required for
accurate prediction of solar activity
and data discovery in solar physics

We are living in an Era of large

undiscovered scientific data volumes.
We should use this advantage.

Solar Physics Mission Data Sizes

Accumulated Data Volumes [Pbytes]
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